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Linear versus Logarithmic Averaging

HxIy Cox

Doeid Taylo Mid Basis, WasHiatx, D. C. ZIXA7

Consider x data samples (z, .... z.) such that *<L z . U< -. Let K- U/L; then it ladxown that In-
dependent of a a lower bound on the ratio of the geometric mean ti the arithmetic mean of the data samples
is given by OnK/(K- 1) KI x )- -J(E- 1

) j. This bound is useful in acoustic signal processing since it limits
the amount of deviatlon that can be attributed to avenging loathms vice ziklg the logarithm of the
average of data samples. Both methods are currently in use at fafilities W4aling in the proceutag of
acoustic data. For a K of 10 dB, for ezample, the geometric meaa is less then 1.5 dB below the arithmetic

IITRODUCTION Eq. 1. 1! O<L<_xt<_U<o for i-I, 2, ... , x, and

N dealing with acoustic data, it is customary to K-U/L>1, then kK)5F(x) 1, where
expren quantities in logarithmic form (decibels).

The output from a data-processing operation can de- B(K), lnK/(K- )-K'(ZII*X-4fl.
pend upon the point at which !he conversion from a The proof of this theorem is givem in Appendix A.
linear to a logarithmic scale is made. In particular, For convenience, values of the lower bw'd B(K) are
certain data-processing facilities average btfore taking given in Table I and a plot of B(e ) is given in Fg. .
logarithms and so obtain the logarithm f the arithmetic From Table , we psee, for ex ple, that, for K- 2
mean of the data sample, while other facilities convert spread in data of 6 dB), then F(x)>.942 and theto a logarithmic scale before averaging, thereby ebtain- geomri mean is less than 052 dB below the ath-
ing the logarithm of the geometric mean. The question i.ieti .mean.
naturally arises, "How much differnce can the type
of averaging used m3ke in the final result?" lThe purpose ft DISCUSSION
of this paper is to provide a bou.i on the amount of
deviation tht. can be attributed :o geometric averaging The function B(K) is a lower bound on the ratio of
vice ar;thmetic averaging, the geometric mean to arithmetic mean. As is shown

The data are assumed to cnsist of a samples that in ,Appendix A, F(x) takes on its minimum value otuy
are confined to lie between en upper Fmit U and a when a certain percentage of the data points He on the
positive lower limit L. The quantity studied is the ratio
of the geometric mean -o the arithmetic mean; that is, TAaz 1. VaWies of lower boumi.
the function

1 / iX K 20loga.K DWI, 20lSOgsBWK
f-1 X 0,1 -11 3.0103 0.99512 - 0.13019

2 6.020 6 0.94208 - 0.51820
where 0<L:5xiU<n. It is well-known that this 4 12.041 0.79130 - 2.03328 I$.062 0.S99 7 - 4.4374ratio is equal to or lea than unity, and equal to unity 16 24.062 0.417 € - 7.5837
only if all the si's are equal The problem is to bound 32 30.103 0.27175 -11.316
this ratio as closely u posible from -elow. 64 36124 0.16796 -I15A05

128 42.144 0.099959 -20.0o
L kAIN USULT 256 48.165 0.057 840 -24.755

S!2 54.18S 0.032 72 -29.687
The main result ,1 this paper can be summarized 1024 60.206 0.018294 -34.754

in the following Thcorem. Let F(z) be defined as in



rz
up limit U and the reainder le on the lower limit 20 1, K
L. Heuce, it is extremely unlikely in an actual t.- -4 6 2 1. 0 24

procwing operation that F(x) will take on its minimum
value. In fact, the deviation between the geometric
mean and the arithmetic mean will *requepdy be much
les tha the amount of the bound. Further, it must be
emphasized tht, in datap.-ocessing operation, it is
thea he data at the poin t in e process at
which conversion from linear t; lagariunic scale occurs
mher than the spread in the raw data that determines
the amount of deviation.

UL CONCLU&ION L . . .. .

A undon the deviatie' of the geometric mean from O I1. PIt of lowerbound B(K) vsK.
the arithmetic mean has been presented. This bound
deqpends only on the rat;o of the maximum value to dent of the number ef sample points. T1ds r-sult has
the minimum value nf the data sample and is indepen- direct application in the proceisng of acoustic data.

Appendix A: Proof of Theorem

Let x be the vector (xi, x.. *, xj, and consider the We can o ta,, inlormation about the minimum of
fuaction F(x) on E 1 om Eqs. A4 and A5, which imply that,

idep.dmt' 4 'At vdws *e oe , coovdiuaks, F(x) can

P(i)-[i " /rav,,k., (Al) alw--- 5 be made smaller by decreasa& xi for

defined on the hypercube .7-(x: O<Ltz,_U<oc). 1,< X k (M)
Note that F is continuous on H, and 1 is compact so -( A6)

that a minimum of F on H exists, and that this mini-
mum must be either in the intcrior of H or on the and by increasing x, for
boundary of H. Differentiating Eq. AL with respect to

x, and rearranging terms, yields I

I 1 X>- : xv. (A7)
Wax,-im (Xid 1)C lf I F. Xa'-x(/ 0.-1 ba

This implies that F must take on its minimum at one
L.. X . (A2) of the vertices of H; that is, at the minimum of F, each

coordinate must equal either the upper limit U or the

Examining Eq. A2, we see that, for xaH, lower limit L.
Let' us now examine the value of F at the vertices

aF A of H. Suppose that Xx coordinates are equal to U and
- 0 ior X,- X,, (M) (1-A)s coordinates are equal to L; then, substituting

C)X, 0- P" these values into Eq. Al, we see that F(z) ia equal to

-<0 for x,>- E z&, (A4) K
ax, X " f(X)= -( X 0, ,/ , 2,'n, .-- , 1, (A8)

OF 11+(-)O->,) for x<- , (AS) K-U/L>1.
C1.', X- 1

At a stationary point, Zhe relation OF/x,IO imrst be At X-0 and X-:, all coordinatts are equal and

satisfied for i-1, 2,... !t From Eq. A3, it isrovious f(0)-f(l)-l, whi,.h is the maximum alue of F(x).
hafand ly if il te Now, consider the problem of nmaimizing Eq. A8

are toza, i. e., i and only i f z.x; for - -.e, f, with respect to., or, equivalently, minimizing

jxl, ... , u. In this case, F(x)-! I..d the s ationa y
point is a maximum. 1))f(X))nKn{l-.'(-l)}. (A9)
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For the moment, suppose that ) could take on con- yields the basic result
tnuous values on the interval C<X< 1. Then, setting F(x)I)nK/(K-)3KI')-IC'-1l, (A13)

dl~lr(f(^))}/d -laK-(K-l) .[-X(K-1)] (AIO)
... which was to be p~roven.

equal to zro %nd solving for) o we obtain the minimizing
value X*- (I/K)- M/( .-)) (All) RMA3K

Although we have treated ) as a continuous viabie
ThisvalueofliesintheintervalO<, <lasrequired. in deriving Eq. A13 in the original problem, X, cod

To verify that X* actually corresponds to a minimm, only take on discrete values 0, 1/s, 2/m, ... , 1. V! none
we note. that of these values correspond to the minfiizing value ?*

dG nU(X)_RdX2 given in Eq. All, then the inequality in Eq. A13 be.
-(K-)Y/[14-XA-l)_>O rt O < (A12) comes a strict inequality. If, for example, (mi/)<).*

<(m+1)/x for some m*{O, 1, -.- , s-1), thea, from
which shcows that lnU(X) is convex on the interval Eq. Al 2, we see that the minimum of F(x) is equal to
0<A<l. Substituting X" from Eqs. All in Eq. AS, either f(m/u) or f(m+ 1/x), whichever is smaller.
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3 ABSTRACT

Consider r data sawmles I:, .. z.1 such that O<L <zi:U<a.. Let. UIL; then it is shown
that independent of n a lower hound on the ratio or the geometric mean to the arithmetic mean of the
data samples is given by [in K(K - 1)]K 1(1/Ia K) - 1(K -1) 1. This bound is useful in acoustic signal
processing since it limits the amount at deviation that can be attributed to averaging logarithms vice
taking the logarithm o! the average of data samples. Both methods are currently in use at facilities
specializing in the processing of acoustic data. For a K or 10 dB, for example, the geometric mean

;9 less than 1.5 d8 below the arithmetic mean.
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